MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech II Semester Supplementary Examinations, July 2021 Engineering Physics-II

Roll No

Time: 3 hours

Answer Any Five Questions

Max. Marks: 75

Answer Any Five Questions
All Questions carries equal marks.

	All Questions carries equal marks. ***	
1	Calculate atomic packing factor for SC, BCC and FCC structures	[15M]
2	Derive an expression for the cohesive energy of a diatomic molecule	[15M]
3	Discuss how X-ray powder method can be used for the determination of crystal	[15M]
	parameters	
4	Derive an expression for concentration of Schottky defects in an ionic crystal	[15M]
5	Derive expressions for electronic and ionic polarizabilites	[15M]
6	Describe with a neat diagram about the generation of ultrasonic wave by	[15M]
	piezoelectric method	
7	Explain the properties of Dia, Para, Ferro, Anti Ferro, Ferri Magnetic properties	[15M]

Explain the properties of Dia, Para, Ferro, Anti Ferro, Ferri Magnetic properties [15M]

8 Describe the process of "sol-gel" method in the fabrication of Nano materials [15M]

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech II Semester Supplementary Examinations, July 2021

Mathematics-II

(Common	to	all	branches)
---------	----	-----	-----------

Roll No				

Time: 3 hours Max. Marks: 75

Answer Any **Five** Questions All Questions carries equal marks.

- 1 a) Using Regula- falsi method, find approximate root of the equation $x^3-x-4=0$ [7M]
- b) Find y(1.6) using Newton's forward interpolation formula from the table [8M]

X	1	1.4	1.8	2.2
y	3.49	4.82	5.96	6.5

- Find a real root of the equation $x\log_{10}(x) = 1.2$ which lies between 2 and 3 by Bisection method. [8M]
- Using Gauss backward difference formula, find y(8) from the following data: [7M]

X	0	5	10	15	20	25
у	7	11	14	18	24	32

- 3 Evaluate $\int_0^1 \frac{1}{1+x} dx$ [15M]
 - i) ByTrapezoidal Rule ii) By Simpson's 1/3rd Rule iii)By Simpson's 3/8 th Rule
- Solve dy/dx = x + y, given y(1) = 0. Find y(1.1) and y(1.2) by Taylor's series method [15M]
- 5 Expand $f(x) = x \sin x$, as a Fourier series in $(0, 2\pi)$ [15M]
- Find the half range sine series for $f(x) = x (\pi x)$ in $0 < x < \pi$ and deduce that $1/1^3 1/3^3 + 1/5^3 1/7^3 + ... = \pi^3/32$
- 7 Solve a) $p^2 + q^2 = x + y$ [7M] b) x (y-z)p + y (z-x)q = z(x-y) [8M]
- Verify Green's theorem for $\oint (3x^2 8y^2) dx + (4y 6xy) dy$ where C is bounded by $y = \sqrt{x}$ and y = x

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech II Semester Supplementary Examinations, July 2021 Object Oriented Programming

(Common to all branches)

Roll No

Time: 3 hours

Answer Any Five Questions

Max. Marks: 75

Answer Any **Five** Questions All Questions carries equal marks.

1	List the drawbacks of conventional programming. Explain how object oriented	[15M]
	programming overcome them.	
2	Explain structure of a C++ Program with suitable example?	[15M]
3	What is an object? How is it different from an ordinary variable and a class?	[15M]
	Explain with an example.	
4	Write a program for calculating the total marks and Grade of the 60 students in a	[15M]
	class.	
5	How will you destroy the objects initialized by the constructor in the program?	[15M]
	Explain?	
6	What are different types of inheritance supported by C++? Give an example for	[15M]
	each.	
7	Explain Run time polymorphism with suitable example?	[15M]
8	Define template. What is the need for templates in programming? Write C++ code	[15M]

that declares a Template class.

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech II Semester Supplementary Examinations, July 2021 Electrical Circuits

(ECE, CSE & IT)												
Roll No												

Time: 3 hours Max. Marks: 75

Answer Any **Five** Questions All Questions carries equal marks.

1 Find the power absorbed by each element in the following circuit. [15M

2 Use Kirchhoff's laws to determine 'v_x' in the following circuit [15M]

- 3 Derive the necessary equations for star to delta and delta to star transformation [15M]
- 4 Determine the mesh currents in the following circuit [15M]

5 Calculate effective values and average value of the following voltage waveform shown in Figure. [15M]

Find the equivalent impedance for a given network at an operating frequency of 5 rad/sec. [15M]

7 Find the maximum power transferred to load in the following circuit.

[15M]

8 Explain the working of transformer and derive the emf equation of a [15M] transformer.

8

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech II Semester Supplementary Examinations, July 2021 **Engineering Chemistry**

			2118111		5 011		Str J							
			(ME	& A	E)						_		
		Roll No												
Time: 3	3 hours										Max	x. N	Iarks :	: 75
			Answer	•		_								
		All	Questio			equa	ıl ma	rks.						
1	D 1 1	NT .	c · 1	•	**									F1 63 63
1	Derive the	e Nernst equation	for singl	e elec	etrode	e.								[15M]
2	Discuss at	bout construction,	function	ning, a	advaı	ntage	es an	d app	olica	tions	of F	Hyd	rogen	[15M]
	-Oxygen f	fuel cell												
2			41	4 C		_•	:41		4 .		4	- C .	4 . 1	[1 <i>5</i>] \ (1)
3	w nat are i	the factors affectir	ig the ra	te or	corro	SIOII	Will	resp	bect i	о па	lure	OI I	metai	[15M]
	and enviro	onment?												
4	Describe													
	(a) sacrifi	icial anodic protec	ction											[7M]
	(b) impre	ssed current catho	dic prot	ectior	ı									[8M]
5	Explain th	ne preparation, pro	perties a	and us	ses of	f PV	C in	detai	i1					[15M]
6	Write abo	ut preparation and	applica	tions	of Po	oly v	inyla	ceta	te an	d Po	ly la	ctic	acid	[15M]
7	How is the	e softening of water	er carrie	d out	using	g the	Zeo	lite p	oroce	ess? l	Expl	ain	with a	[15M]
	neat labell	led diagram.												

Give the significance of ultimate analysis and proximate analysis.

[15M]

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

I B.Tech II Semester Supplementary Examinations, July 2021 **Engineering Drawing**

(ME & AE)										
Roll No										

Time: 3 hours Max. Marks: 75

> Answer Any Five Questions All Questions carries equal marks.

- 1 Construct parabola when the distance of the focus from the directrix is equal to 50 [15M] mm, using general method and also draw normal and tangent at convenient location.
- 2 Draw a cycloid of a circle of radius 30 mm. Also draw tangent and normal of the [15M] cycloid.
- 3 A point P is 50 mm from both the reference planes. Draw its projections in all [15M] possible positions.
- 4 A line PQ of length 80 mm is 15 mm above **HP** and 20 mm infront of **VP** The line [15M] is inclined at angle of 30^{0} to **HP** and 45^{0} to **VP**. Draw the projections of the line and find the final views.
- 5 A regular hexagon of 25 mm side has one side on the ground. Its plane is inclined [15M] at 30° to the H.P and perpendicular to the V.P. Draw its projections.
- 6 Draw the projections of a square pyramid, base 30 mm side and axis 60 mm long, [15M] having its base on the H.P. and one of the edges of the base inclined at 30° to the V.P.
- 7 Draw the isometric view of the following (All Dimensions are in mm) [15M]

8

Draw the following views

(i) Front view. (ii)Top view.

(All Dimensions are in mm)

Page 2 of 2

[15M]